Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U31(tt) → 0
a__U41(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__isNat(x(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
a__x(N, 0) → a__U31(a__isNat(N))
a__x(N, s(M)) → a__U41(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U31(X) → U31(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U31(tt) → 0
a__U41(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__isNat(x(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
a__x(N, 0) → a__U31(a__isNat(N))
a__x(N, s(M)) → a__U41(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U31(X) → U31(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

A__ISNAT(x(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
MARK(U11(X1, X2)) → MARK(X1)
A__U21(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U11(tt, N) → MARK(N)
MARK(s(X)) → MARK(X)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
MARK(plus(X1, X2)) → MARK(X2)
A__AND(tt, X) → MARK(X)
A__U21(tt, M, N) → MARK(M)
A__U41(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
MARK(x(X1, X2)) → MARK(X1)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
MARK(and(X1, X2)) → MARK(X1)
A__PLUS(N, s(M)) → A__ISNAT(M)
A__PLUS(N, s(M)) → A__AND(a__isNat(M), isNat(N))
A__X(N, 0) → A__U31(a__isNat(N))
MARK(U31(X)) → MARK(X)
A__ISNAT(x(V1, V2)) → A__ISNAT(V1)
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X1)
A__X(N, 0) → A__ISNAT(N)
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__PLUS(N, 0) → A__ISNAT(N)
MARK(U21(X1, X2, X3)) → A__U21(mark(X1), X2, X3)
MARK(U31(X)) → A__U31(mark(X))
A__X(N, s(M)) → A__ISNAT(M)
A__U41(tt, M, N) → MARK(N)
A__U21(tt, M, N) → MARK(N)
MARK(x(X1, X2)) → MARK(X2)
A__X(N, s(M)) → A__U41(a__and(a__isNat(M), isNat(N)), M, N)
MARK(U21(X1, X2, X3)) → MARK(X1)
A__U41(tt, M, N) → MARK(M)
A__U41(tt, M, N) → A__X(mark(N), mark(M))
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__PLUS(N, s(M)) → A__U21(a__and(a__isNat(M), isNat(N)), M, N)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
A__X(N, s(M)) → A__AND(a__isNat(M), isNat(N))
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(isNat(X)) → A__ISNAT(X)
A__PLUS(N, 0) → A__U11(a__isNat(N), N)

The TRS R consists of the following rules:

a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U31(tt) → 0
a__U41(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__isNat(x(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
a__x(N, 0) → a__U31(a__isNat(N))
a__x(N, s(M)) → a__U41(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U31(X) → U31(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

A__ISNAT(x(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
MARK(U11(X1, X2)) → MARK(X1)
A__U21(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U11(tt, N) → MARK(N)
MARK(s(X)) → MARK(X)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
MARK(plus(X1, X2)) → MARK(X2)
A__AND(tt, X) → MARK(X)
A__U21(tt, M, N) → MARK(M)
A__U41(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
MARK(x(X1, X2)) → MARK(X1)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
MARK(and(X1, X2)) → MARK(X1)
A__PLUS(N, s(M)) → A__ISNAT(M)
A__PLUS(N, s(M)) → A__AND(a__isNat(M), isNat(N))
A__X(N, 0) → A__U31(a__isNat(N))
MARK(U31(X)) → MARK(X)
A__ISNAT(x(V1, V2)) → A__ISNAT(V1)
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X1)
A__X(N, 0) → A__ISNAT(N)
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__PLUS(N, 0) → A__ISNAT(N)
MARK(U21(X1, X2, X3)) → A__U21(mark(X1), X2, X3)
MARK(U31(X)) → A__U31(mark(X))
A__X(N, s(M)) → A__ISNAT(M)
A__U41(tt, M, N) → MARK(N)
A__U21(tt, M, N) → MARK(N)
MARK(x(X1, X2)) → MARK(X2)
A__X(N, s(M)) → A__U41(a__and(a__isNat(M), isNat(N)), M, N)
MARK(U21(X1, X2, X3)) → MARK(X1)
A__U41(tt, M, N) → MARK(M)
A__U41(tt, M, N) → A__X(mark(N), mark(M))
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__PLUS(N, s(M)) → A__U21(a__and(a__isNat(M), isNat(N)), M, N)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
A__X(N, s(M)) → A__AND(a__isNat(M), isNat(N))
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(isNat(X)) → A__ISNAT(X)
A__PLUS(N, 0) → A__U11(a__isNat(N), N)

The TRS R consists of the following rules:

a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U31(tt) → 0
a__U41(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__isNat(x(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
a__x(N, 0) → a__U31(a__isNat(N))
a__x(N, s(M)) → a__U41(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U31(X) → U31(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

A__ISNAT(x(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
A__U21(tt, M, N) → A__PLUS(mark(N), mark(M))
MARK(U11(X1, X2)) → MARK(X1)
A__U11(tt, N) → MARK(N)
MARK(s(X)) → MARK(X)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
MARK(plus(X1, X2)) → MARK(X2)
A__U21(tt, M, N) → MARK(M)
A__AND(tt, X) → MARK(X)
A__U41(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
MARK(x(X1, X2)) → MARK(X1)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
MARK(and(X1, X2)) → MARK(X1)
A__PLUS(N, s(M)) → A__ISNAT(M)
A__PLUS(N, s(M)) → A__AND(a__isNat(M), isNat(N))
MARK(U31(X)) → MARK(X)
A__ISNAT(x(V1, V2)) → A__ISNAT(V1)
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
MARK(U41(X1, X2, X3)) → MARK(X1)
A__X(N, 0) → A__ISNAT(N)
MARK(plus(X1, X2)) → MARK(X1)
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__PLUS(N, 0) → A__ISNAT(N)
MARK(U21(X1, X2, X3)) → A__U21(mark(X1), X2, X3)
A__X(N, s(M)) → A__ISNAT(M)
A__U41(tt, M, N) → MARK(N)
A__U21(tt, M, N) → MARK(N)
MARK(x(X1, X2)) → MARK(X2)
A__X(N, s(M)) → A__U41(a__and(a__isNat(M), isNat(N)), M, N)
A__U41(tt, M, N) → MARK(M)
MARK(U21(X1, X2, X3)) → MARK(X1)
A__U41(tt, M, N) → A__X(mark(N), mark(M))
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__PLUS(N, s(M)) → A__U21(a__and(a__isNat(M), isNat(N)), M, N)
A__X(N, s(M)) → A__AND(a__isNat(M), isNat(N))
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(isNat(X)) → A__ISNAT(X)
A__PLUS(N, 0) → A__U11(a__isNat(N), N)

The TRS R consists of the following rules:

a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U31(tt) → 0
a__U41(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__isNat(x(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
a__x(N, 0) → a__U31(a__isNat(N))
a__x(N, s(M)) → a__U41(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U31(X) → U31(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


A__ISNAT(x(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
MARK(U11(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
MARK(plus(X1, X2)) → MARK(X2)
A__U21(tt, M, N) → MARK(M)
A__AND(tt, X) → MARK(X)
A__U41(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
MARK(x(X1, X2)) → MARK(X1)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
MARK(and(X1, X2)) → MARK(X1)
A__PLUS(N, s(M)) → A__ISNAT(M)
A__PLUS(N, s(M)) → A__AND(a__isNat(M), isNat(N))
A__ISNAT(x(V1, V2)) → A__ISNAT(V1)
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
MARK(U41(X1, X2, X3)) → MARK(X1)
A__X(N, 0) → A__ISNAT(N)
MARK(plus(X1, X2)) → MARK(X1)
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__PLUS(N, 0) → A__ISNAT(N)
MARK(U21(X1, X2, X3)) → A__U21(mark(X1), X2, X3)
A__X(N, s(M)) → A__ISNAT(M)
A__U41(tt, M, N) → MARK(N)
A__U21(tt, M, N) → MARK(N)
MARK(x(X1, X2)) → MARK(X2)
A__X(N, s(M)) → A__U41(a__and(a__isNat(M), isNat(N)), M, N)
A__U41(tt, M, N) → MARK(M)
MARK(U21(X1, X2, X3)) → MARK(X1)
A__U41(tt, M, N) → A__X(mark(N), mark(M))
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__PLUS(N, s(M)) → A__U21(a__and(a__isNat(M), isNat(N)), M, N)
A__X(N, s(M)) → A__AND(a__isNat(M), isNat(N))
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(isNat(X)) → A__ISNAT(X)
A__PLUS(N, 0) → A__U11(a__isNat(N), N)
The remaining pairs can at least be oriented weakly.

A__U21(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U11(tt, N) → MARK(N)
MARK(U31(X)) → MARK(X)
Used ordering: Combined order from the following AFS and order.
A__ISNAT(x1)  =  x1
x(x1, x2)  =  x(x1, x2)
A__AND(x1, x2)  =  A__AND(x1, x2)
a__isNat(x1)  =  x1
isNat(x1)  =  x1
A__U21(x1, x2, x3)  =  A__U21(x2, x3)
tt  =  tt
A__PLUS(x1, x2)  =  A__PLUS(x1, x2)
mark(x1)  =  x1
MARK(x1)  =  MARK(x1)
U11(x1, x2)  =  U11(x1, x2)
A__U11(x1, x2)  =  A__U11(x2)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
A__U41(x1, x2, x3)  =  A__U41(x1, x2, x3)
a__x(x1, x2)  =  a__x(x1, x2)
U41(x1, x2, x3)  =  U41(x1, x2, x3)
and(x1, x2)  =  and(x1, x2)
U31(x1)  =  x1
A__X(x1, x2)  =  A__X(x1, x2)
0  =  0
U21(x1, x2, x3)  =  U21(x1, x2, x3)
a__and(x1, x2)  =  a__and(x1, x2)
a__U31(x1)  =  x1
a__U21(x1, x2, x3)  =  a__U21(x1, x2, x3)
a__plus(x1, x2)  =  a__plus(x1, x2)
a__U11(x1, x2)  =  a__U11(x1, x2)
a__U41(x1, x2, x3)  =  a__U41(x1, x2, x3)

Recursive path order with status [2].
Quasi-Precedence:
[x2, AU413, ax2, U413, AX2, aU413] > [plus2, U213, aU213, aplus2] > [AAND2, AU212, APLUS2, MARK1, AU111] > [and2, aand2] > [U112, aU112]
[x2, AU413, ax2, U413, AX2, aU413] > [plus2, U213, aU213, aplus2] > [tt, s1, 0] > [U112, aU112]

Status:
plus2: [2,1]
APLUS2: multiset
U413: [3,2,1]
aand2: multiset
aU112: multiset
aU213: [2,3,1]
x2: [1,2]
U112: multiset
and2: multiset
0: multiset
AU111: multiset
ax2: [1,2]
aplus2: [2,1]
AAND2: multiset
aU413: [3,2,1]
AU212: multiset
MARK1: multiset
tt: multiset
AX2: [1,2]
s1: [1]
AU413: [3,2,1]
U213: [2,3,1]


The following usable rules [17] were oriented:

a__isNat(0) → tt
a__U31(tt) → 0
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(isNat(X)) → a__isNat(X)
a__U41(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
mark(and(X1, X2)) → a__and(mark(X1), X2)
a__isNat(s(V1)) → a__isNat(V1)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
a__and(tt, X) → mark(X)
a__isNat(x(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__U11(tt, N) → mark(N)
a__x(N, s(M)) → a__U41(a__and(a__isNat(M), isNat(N)), M, N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
a__x(N, 0) → a__U31(a__isNat(N))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(tt) → tt
mark(U31(X)) → a__U31(mark(X))
a__isNat(X) → isNat(X)
a__and(X1, X2) → and(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U31(X) → U31(X)
a__plus(X1, X2) → plus(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U11(X1, X2) → U11(X1, X2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(U31(X)) → MARK(X)
A__U11(tt, N) → MARK(N)
A__U21(tt, M, N) → A__PLUS(mark(N), mark(M))

The TRS R consists of the following rules:

a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U31(tt) → 0
a__U41(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__isNat(x(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
a__x(N, 0) → a__U31(a__isNat(N))
a__x(N, s(M)) → a__U41(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U31(X) → U31(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
QDP
                  ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

MARK(U31(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U31(tt) → 0
a__U41(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__isNat(x(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
a__x(N, 0) → a__U31(a__isNat(N))
a__x(N, s(M)) → a__U41(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U31(X) → U31(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ UsableRulesProof
QDP
                      ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

MARK(U31(X)) → MARK(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: